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Abstract. The Java security architecture in the Java Development Kit

1.2 expands the current Java sandbox model, allowing �ner-grained, con-

�gurable access control for Java code. This new security architecture per-

mits more precise, yet exible, protection for both remote code (loaded

across a network connection) and local code (residing on the same ma-

chine running the Java Virtual Machine) developed using the Java pro-

gramming language. Our formal model and analysis is intended to: (1)

allow designers and implementors to understand and correctly use the

protection provided by these security controls, and (2) provide guidance

to a JVM implementor wishing to support these security controls. Access

control decisions in Java are made based on the current execution con-

text using stack introspection. To model this, we employ a state-based

model that uses multiple access control matrices to model the security

controls in JDK 1.2. We also present a safety analysis and discuss the

e�ects of static and dynamic security policies for a given Java Virtual

Machine.

1 Introduction

The rise of Java as a programming language has important implications if em-
ployed for high assurance systems. Java can be used to implement systems that
have high assurance requirements and must perform critical functions correctly.
The security controls supported by the Java programming language and the
Java Virtual Machine (JVM) can be a signi�cant bene�t in developing high as-
surance systems in Java, but only if: (1) designers and implementors understand
the protection those controls can provide and develop a system that uses the
controls appropriately to meet system requirements, and (2) the JVM on which
the system runs implements the controls correctly, without providing loopholes
or bypasses.

This paper addresses the �rst of these two concerns by providing a model
for the security controls implemented in the Java Developer's Kit (JDK) 1.2.



The purpose of this model is to provide: (1) designers and implementors with a
precise understanding of how these controls work so that they can design sys-
tems that use the controls correctly, and (2) guidance to a Java virtual machine
implementor wishing to support these security controls. The need for a precise
understanding of the security controls is highlighted by the fact that the new
controls require complex changes to the functionality of the virtual machine. As
noted before in [18], changes to the JVM can destabilize the entire system.

The issue of whether a given implementation of the JVM on a given platform
implements the controls correctly is important but beyond the scope of this pa-
per. One interesting opportunity created from having many JVMs on di�erent
platforms is that the same application could be executed on a variety of un-
derlying hardware and software platforms and their results compared as a way
of reducing vulnerability to hardware aws, software aws, and perhaps even
malicious attacks or misuse [14].

Even with such security concerns, Java's still-growing popularity has several
roots. Language features such as type-safety, automatic memory management
and range checking on strings and arrays are examples of how Java reduces the
chance of some common kinds of programming errors, e.g., bu�er overow. (This
is very important for safety-critical software as well.) Further, the availability
of JVMs for a wide variety of platforms brings the possibility of \write once
run anywhere" to application developers. The inclusion of applet tags in HTML
together with the incorporation of the JVM into web browsers permits web
servers to provide downloadable executable content (Java applets) transparently,
moving appropriate computing tasks from the server to the client domain.

Java's developers recognized the concerns that users might have about per-
mitting arbitrary applets to execute on their machines and initially provided a
simple \security model" for applet execution [20]. In this model, downloaded ap-
plets would be con�ned by the JVM to executing within a \sandbox" that would
prevent them from, for example, altering the client's �le system, or communicat-
ing with any network sites other than the site from which they were downloaded.
Java applications (local programs not downloaded via a web browser) would ex-
ecute as \trusted", without sandbox constraints.

Predictably, some initial JVM implementations didn't implement the \sand-

box" correctly [4, 6], and when they did, developers sometimes found the sandbox
model too restrictive. Further, although the notion of a sandbox is simple, its
detailed implications for security enforcement are not. Java applications, on the
other hand, were (like typical programs run on clients) subject only to the user's
constraints, and the idea that some additional constraints (perhaps less stringent
than those imposed on applets) might be imposed on applications has appeal to
users and developers alike.

Consequently, Javasoft has developed more exible security controls in JDK
1.2 [8]. With this new architecture, the earlier constraints on applets can be
relaxed (depending on the source of the applet and any digital signatures that
have been used to sign it) and local code can now be subjected to the same
security controls as applets. Users can con�gure policies that their JVM must



enforce on applications as well as applets [9]. Thus, the security controls now
allow �ner-grained access controls for applets as well as applications. This results
in a security architecture that allows multiple sandboxes with varying access
permissions to co-exist.

But with exibility comes complexity and thus error-proneness. The reason
for developing this formal security model is to answer precise, detailed questions
about how the security controls are intended to behave and the implications of
how each JVM implements the security controls. These questions often reveal
subtle, undocumented, and sometimes unexpected behaviors that surface in an
implementation of the JVM. As we describe the formal model, we will identify
such aspects of JDK 1.2's current security controls and we will discuss the e�ects
of static and dynamic security policies for a given JVM.

2 Overview of JDK 1.2 Security Controls

The security architecture in JDK 1.2 is based on protection domains that rep-
resent units of protection within the Java runtime environment. Protection do-

mains are de�ned according to: (1) the location of where the Java code originated
(the URL codebase), and (2) a set of cryptographic keys corresponding to the
private keys that signed the code. Every .class �le3 belongs to a single protection
domain and is granted permissions according to its domain. Thus, a protection
domain is scoped by the set of classes and objects (in the object-oriented sense)
that are currently directly accessible by a principal, where a principal is an entity
in the computer system to which permissions are granted [8].

Security policy �les are used to specify the overall system security policy.
These �les contain a sequence of permission entries specifying which protection
domains should be created and what permissions to grant to each protection
domain. For each user running a JVM, there is a system security policy �le and
optionally a user security policy �le that can be added to it. Since there are
no negative permissions, the composition of the system and user policy �le is
simply the union of the two �les to specify the policy \in-e�ect" for a user's
JVM.4 If neither policy �le is present, then the default security policy is the
original sandbox policy.

An example of a permission entry in a security policy �le is:

grant codeBase \http://www.itd.nrl.navy.mil" SignedBy \abcdefg" f
permission java.io.FilePermission \/home/foo/bar", \read", \write";

g;

The above example indicates that code originating from the URL
http://www.itd.nrl.navy.mil/ signed with the key \abcdefg" has the permission
to read and write to the system resource (in this case a �le) \/home/foo/bar."

3 A .class �le is the bytecode corresponding to the source code for a Java object-

oriented class.
4 To date, a JVM is implicitly owned by one user only.



Access control decisions are not based solely on the contents of the policy
�le(s). Thus, an entry in the security policy �le does not necessarily warrant
access to a system resource, because access control decisions are also made de-
pending on the execution context. The execution context includes checking all
protection domains and their associated permissions \involved" in the request
before granting any permissions. This design prevents more restricted protec-
tion domains from acquiring permissions not indicated in the security policy
�les. This mechanism is known as extended stack introspection and has been
implemented by JavaSoft, Netscape, Microsoft and other vendors. Each imple-
mentation varies [18, 16, 15, 8], but the core design is similar and is the basis of
our model.

Before describing the components of our model, �gure 1 illustrates how the
JDK 1.2 security architecture maps into our model (de�ned in Sections 3 and 4).
On the left-hand side of the �gure, we show four protection domains that may
co-exist, which have varying permission boundaries. We represent the security
policy for this JVM with a VM policy matrix as indicated on the right-hand
side of this �gure. This VM policy matrix speci�es the security policy, which is
constructed from the system policy �le (and possibly a user policy �le based on
the user starting the JVM) for the four protection domains currently executing
on this JVM. Using this VM Policy Matrix, we de�ne a domain matrix for each
thread of execution on a JVM. These domain matrices correspond to the multiple
sandboxes with varying permissions that may co-exist in JDK 1.2.5
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Fig. 1. JDK 1.2 Security Architecture Mapping

In the following sections, we de�ne our Java Access Model (JAM), a state-
based model that uses access control matrices to model protection states. There
are a few noteworthy distinctions between JAM and other access matrix mod-
els. First, even though JAM relies heavily on the use of matrices, it does not

5 The permissions will vary based on the protection domains (and their associated

permissions) that are present in a domain matrix.



have any individual matrix cell operations per se, which eliminates the ability to
add, remove or transfer access rights between principles. Second, access is not
accomplished by a lookup of a single matrix cell, as in many of the traditional
techniques [13]. Instead, a special columnar operator is used to determine ac-
cess. Finally, more than one matrix (VM Policy Matrix and domain matrices) is
necessary to model the security controls for a JVM. These di�erences rule out
many of the characteristics of other access control matrix models such as Bell-
LaPadula (BLP) [2], Harrison, Ruzzo, and Ullman (HRU) [11], and Sandhu's
TAM model [17]. The next section de�nes our formal representation of the JDK
1.2 security architecture.

3 The Virtual Machine Policy Matrix

The virtual machine policy matrix is a (source by target) matrix of allowable
actions. We also show how a given virtual machine policy matrix de�nes any
possible domain matrix that may exist for a JVM. Every component in the
model is �nite. The de�nitions of the virtual machine policy matrix follow.

De�nition 1. R is a set of resources. Elements of R model anything available
through the operating system, e.g., �les, devices or network connections.

De�nition 2. A is a set of actions. A includes the permissions provided by the
underlying operating system (e.g., read, write, execute).

De�nition 3. S is a set of sources. A source, is a pair (n; k), where n is a URL
that names the location of a collection of classes and k is a set of public keys that
are associated with the signers of the classes in n. If n is the wildcard *, this repre-
sents any URL. Likewise, if k is the string \*", then this means the corresponding
collection of classes are not signed. Similar to subjects in traditional access con-
trol matrix models, sources denote the rows in an access control matrix. The ele-
ments of S are not necessarily disjoint. That is, there may be sources in S, where
the collection of classes and the corresponding keys (if any) overlap. When this
happens we say, one source is a pre�x of another. Source s1 = (n1; k1) is a pre�x
of source s2 = (n2; k2) if n1 � n2 and k1 = k2, where � denotes the URL pre�x
operator. For example, the source (http://www.itd.nrl.navy.mil/, \abcdefg") is a
pre�x of source, (http://www.itd.nrl.navy.mil/people/, \abcdefg"), because the
keys match and the URL that names a collection of classes in the �rst source is
a pre�x of the URL http://www.itd.nrl.navy.mil/people/.

De�nition 4. T is a set of targets. Targets are strings that name sets of re-
sources. Similar to targets in traditional access control matrix models, targets
denote the columns in an access control matrix. However, in a VM policy ma-
trix, it is not always the case that every source is also a target as in other access
control matrix models. In a VM policy matrix, it is possible that more than one
target refers to the same set of resources. For example, the use of symbolic links
in UNIX causes more that one path name to refer to the same physical �le.



De�nition 5. The virtual machine policy matrix PM is an jSj � jT j matrix,
where PM [s; t] � A gives the allowable actions for target t, using the collection
of classes loaded from source s. The policy matrix PM is a static representation
of the system security policy �le (with the possible addition of a user security
policy �le), where each row represents a source and every column is a target. The
virtual machine policy matrix is de�ned at Java runtime start-up, thus de�ning
the security policy for a given JVM until the JVM terminates.

Figure 2 is a simple example of a policy matrix. Recall that sources are
composed of a URL (or * for any URL) and the set of associated public keys
(or the wildcard string, \*", if not signed). An empty cell in the matrix implies
that the source has no permissions for the corresponding target. In �gure 2, the
last entry has a wildcard, *, to specify code loaded by the JVM from any URL
receives the following permissions. Thus, all code may read �les in the directory
\/tmp", so this expands the boundary of the original sandbox.

"qwertyasdf456"http://www.hibiscus.flowers/

http://www.rhubrum.lilies/ "*"

"*"*

"abcdef12345"http://www.topiaries.ivy/

http://www.ivy.com/english/ "*"

http://www.ivy.com/ "*"
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read
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"*.mil""*.com:80" "/tmp"t

(where target t  is java.lang.RuntimePermission.createClassLoader)
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1

Fig. 2. Virtual Machine Policy Matrix

De�nition 6. DM is a set of domain matrices. Each element dm 2 DM is an
jSdmj � jT j matrix corresponding to a thread of execution on a JVM, where
Sdm � S and T is the set of targets. Each row in the domain matrix is similar to
a capabilities list, which for Java is called a \protection domain". The actions in
dm[s; t] are the union of all actions in virtual machine matrix element PM [s0; t]
for every source s0 2 S that is a pre�x of s. Thus, for every source s0 2 S that
is a pre�x of s 2 Sdm, the permissions granted to s0 for each target t 2 T are
granted to s for t.



Figure 3 is an example of a domain matrix (with a single row) which is based
on the policy matrix in Figure 2. To illustrate how the domain matrix was cre-
ated, suppose the class http://www.ivy.com/english/green/foo.class were loaded
by a JVM with the policy depicted in Figure 2 in e�ect. Based on the protection
domain of this class, its set of permissions would be the union of the two sources
in the policy matrix that are pre�xes of this class, namely (http://www.ivy.com/,
\*"), (http://www.ivy.com/english/, \*"), and the last entry in the matrix which
applies to any URL. Note that the code loaded from this source was not required
to be signed (as indicated by \*").

http://www.ivy.com/english/ execute
accept,
connect

accept"*"
read,
write

"*.com:80" "/tmp" "*.mil"t1

Fig. 3. Domain Matrix

A domain matrix (with multiple rows) can be viewed as stack (LIFO order),
where the last row added is at the bottom of the matrix. We decided, however, to
use a matrix representation for consistency with the PM representation. With
the matrix form we do not lose any generality as we can manipulate it in a stack-
like way when necessary. Also, the matrix allows us to determine permissions
(de�ned later) with greater ease than a stack.

4 Java Access Model

The virtual machine policy matrix de�ned above applies to a single JVM. In
this section, we de�ne the Java Access Model (JAM), which is the state-based
model for a single virtual machine policy matrix.6 Our Java Access Model is
de�ned as JAM = (PS;C; f; U), where PS is the set of protection states, C is
the set of commands (inputs) that cause JAM to transition from one protection
state to another, f : PS � C ! PS is the transition function, and U is a set
of principals. We use the sequence of input commands c 2 C� to distinguish
the various entities that are found in a protection state. Each entity is given
the subscript of the command that created it. For example, if command i in the
input sequence creates a domain matrix, then the domain matrix is labeled dmi.
The following four de�nitions de�ne the components of JAM.

De�nition 7. U is a set of principals. It models the entities to which authoriza-
tions are granted (and as a result, accountability). Today, a JVM is implicitly

6 JAM can be modi�ed to allow more than one JVM to concurrently execute on a single

computer. However, the focus of this paper is on modeling the security controls of a

single JVM.



owned by a single user causing U to be a singleton set.7

De�nition 8. A protection state ps is a sextet (V;�; S;R; T;A), where

� V is a triple u; PM;DM , where u is a principal, PM is a virtual machine
policy matrix, and DM is a set of domain matrices.

� � : u! PM is the policy function that represents the e�ect of Java policy
�les; it maps a principal u to a virtual machine access matrix PM . Thus,
this function returns the matrix based on the system policy �le. (If a user
policy �le exists, the union of system and user policy �le is used. This is
easily accomplished since there are no negative permission entries in either
�le.)

� S;R; T;A are the sets that are used to de�ne the policy and domain matrices
in V .

De�nition 9. The protection state ps 2 PS of JAM changes by one of the
following commands in C.

� init(u): The command init(u) creates a new triple, V = (u; PM;DMi),
where u is a principal in U , PM = �(u) and DMi is an empty set of
domain matrices (no threads of execution). This command models a principal
starting a JVM.

� destroy(PM): Remove the triple V = (u; PM;DMi) from the current pro-
tection state ps. This command models the termination of a JVM.

� start(dm; s): Add a new domain matrix dm to the set of domain matrices
DMj for the triple (u; PM;DMj). This command models the creation of a
new thread executing the class(es) from source s, where the domain matrix
dm consists of all targets in T and the set of sources Sdm for this domain
matrix is the singleton set s. If start(dm; s) is the ith command in the input
sequence c, then the new domain matrix is dmi, where i > j. The actions
in dm[s; t] for each t 2 T are obtained by the union of PM [s0; t] for every
s0 2 S that is a pre�x of s.

� stop(dm): Remove the domain matrix dm from the set of domain matrices
DM . This command is less interesting as it simply removes permissions for
a thread. This command, however, must also remove any privileges that may
have been associated with dm (the \privileged" mechanism is discussed in
Section 4.1).

� enter(s; dm): Add the source s 2 S to the set Sdm for domain matrix
dm 2 DM . This command adds a new row to the domain matrix dm. This
models a thread of execution entering the protection domain s. As in the
command start, the actions in dm[s; t] for each t 2 T are obtained by the
union of PM [s0; t] for every s0 2 S that is a pre�x of s.

7 This set would not be a singleton if multiple JVMs are modeled or if protection

domains are extended to include the notion of \running-on-behalf" of a principal as

presented in [1, 8]. Thus, we maintain this set for clarity and extensibility.



� exit(s; dm): Remove source s from the set Sdm of domain matrix dm. This
command removes a row from the domain matrix dm. This command models
a thread of execution exiting the protection domain s. This command is most
interesting as the removal of a row in a domain matrix has the potential to
increase the permissions granted to a thread, which is atypical of commands
in traditional access control models. That is, the removal of a row will never
decrease the permissions granted to a thread of execution on a JVM.

De�nition 10. PERMIT : dm; t! a is the permit function which returns the
allowable set of actions a 2 A that a thread may perform on a target t. For
every s 2 Sdm, the permit function takes the intersection of dm[s; t] for target t
as follows.

PERMIT (dm; t) =
\

s2Sdm

dm[s; t]

The resulting set is the e�ective set of actions that a thread may perform. It is
possible that a given s does not have any actions for a target ti, which is denoted
by an empty cell in the matrix. In this situation, the intersection would return
the empty set, since there exists at least one source s 2 Sdm where dm[s; ti] is
an empty cell.
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Fig. 4. Domain Matrix

Given the domain matrix illustrated in Figure 4 and a target ti, the PERMIT

function would take the intersection of the permissions for that target for every
source in the domain matrix. In Figure 5, the intersection of the permissions for
all targets has been calculated. For example, using the dm in Figure 4 and the
target \/tmp", the PERMIT function would return the permission read.

4.1 The \Privileged"

As stated previously, Java access control decisions are made based on the cur-
rent execution context via stack introspection. This is not always a \complete"
introspection, as blocks of Java code may declare that they are \privileged"
by using the beginPrivileged() and endPrivileged() methods of the JDK class
java.security.AccessController. The term privileged is not equated with the usual
security notion of trusted code. Rather, \privileged" in this context means that
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theblockofcodeisresponsibleforrequestingaccesstoitsresources,butthe
blockofcodecannevergainmorepermissionsthanindicatedinthesystempol-
icy�le(anduserpolicy�leifoneexists).Forexample,ablockofcodemayuse
thisprivilegedconstructwhenaccessingsystem�les,suchasfontsorlibraries,
whenotherlesspermissivearelikelytobeontheexecutionstack.

Wemodeltheprivilegedconstructthroughthecommandsenter(s;dm)and
exit(s;dm),wherethetraceofthesecommandsimposesanexecutionordering
oftheprotectiondomainstraversedbyathreadofexecution.Thatis,theenter

commandappendsrowstoadomainmatrixandexitremovesrowsinLIFO
order.

8
Thereforethetop-mostsourceinthedomainmatrixisolderthanthe

sourcesbelowitinthematrix,whichisreectedinthesequenceofcommands
onthedomainmatrix.Theuseof\privileged"circumventstheneedtocheck
allsourcesinthedomainmatrixbyonlycheckingthesourcesthatwereentered
afterthe\privileged"source(theentriesbelowtheprivilegedentryinthedomain
matrix).

PRIVILEGED
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InFigure6,codeobtainedfromthesource(http://www.rhubrum.lilies/,\*")
executedthemethodbeginPrivileged().Now,onlythemorerecentprotection
domainsneedtobecheckedasindicatedbytheshadedportionofthe�gure
beforegrantingpermissiontoanyresources.Wede�nethePERMITfunction
under\privileged"astheintersectionofdm[s;t]overeverysourcesaddedbya
commandinputthatisgreaterthanorequaltothecommandinputthatadded

8
Recallthatadomainmatrixcanbeviewedasstack,wherethemostrecentlyadded

rowisatthebottomofthematrix(asindicatedbythearrowinFigure6).



theprivilegedsourceasfollows:

PERMIT(dm;t)=
\

ci(s)�cj(privileged)

dm[s;t]

Sincethecodeisexecutingasprivileged,theresultsofPERMITmaynot
bethesame.AsindicatedinFigure7,thepermissionsallowedarecalculated
giventhecontextofathreadofexecution.Now,ifthePERMITfunctionis
appliedtothetarget\/tmp"andthedomainmatrixinFigure3,thepermissions
grantedarebothreadandwrite(asopposedtojustreadasinFigure5).

U( "*.com:80"     )

( "*.com:80"    accept, connect )

( "*.com:80"     )

( "/tmp"    read, write )

( "/tmp"    read, write )

( "/tmp"    read, write )

( "*.mil"     )

( "*.mil"    accept )

( "*.mil"     ) ( t    execute ) 1

( t    execute ) 1

1 ( t    execute )

Fig.7.Permissionsgrantedwithaprivilegedprotectiondomain

Itisimportanttonotethattheprivilegedmechanismisscopedwithina
singlethread.Thus,privilegescannotleakto\untrusted"code.Althoughthis
approachallowsstraightforwardauditingofsystemcodetoverifythatprivi-
legesareenabledonlyforalimitedtime,itisstillpossibleforadeveloperto
\forget"tocallendPrivileged.Thepotentialdangerinthisscenariodependson
whethertheimplementationautomaticallyremovestheprivilegeoncethecode
thatcalledbeginPrivilegedexits.Althoughwedonotprovidethiscomparisonin
thispaper,wewillmentionthatNetscape,Microsoft,andJavaSoftvaryintheir
implementationoftheprivilegedmechanism[18,9].

5SafetyAnalysisofJAM

Wepreviouslystatedthatusersarenotlimitedinwhatisenteredintopolicy�les.
Consequently,policymatrices(PM's)arepopulatedbasedonthe\arbitrary"
constructionofpolicy�les,whichprecludesourde�ningasecureinitialstate.
Thesepolicymatricesarethenusedtoformdomainmatrices(dm's),which
areusedtograntordenypermissions(viathePERMITfunction).Therefore
oursafetyanalysisfocusesontheproblemofwhetheraparticulardmcanbe
generatedgivenaparticularPM.WetermthissafetyproblemtheArbitrary

PolicyMatrixproblem(APM)andformulateitasadecisionproblemtofacilitate
ouranalysis.

ThetwotheoremsthatfollowshowthatAPMisinNPandthatAPMisac-
tuallyanNP-completeproblem.Thisfactissigni�cantforthefollowingreasons.
Itdemonstrateshowaveryinterestingresultcanbeobtainedfromasimplema-
nipulationofthemodel,thusdemonstratingtheexpressivenessofJAM.Also,
itshouldbeofgreatimportancetodevelopersworkingwithJDK1.2,sincethe
classofNP-completeproblemsaregenerallyconsideredtobe\intractable."



5.1 The Arbitrary Policy Matrix Problem

APM can be formulated quite simply: given an initial protection state ps0 and
a �nal protection state psf , is it possible for a particular domain matrix dm to
appear in any future state psi such that 1 � i � f? We would like to be able
to answer this question because there might be dm's that are undesirable and it
would be bene�cial to be able to determine if such dm's would be possible for
an arbitrary policy matrix PM .

Theorem 1. APM 2 NP.

Proof. For each row in the dm, the worst case requires checking all possible
combinations of the unions of all the rows in PM . There is an exponential
number of possible rows, bounded by 2S � �, where S is a set of sources as
de�ned in Section 3 and 4. Therefore, the problem can be posed as a decision
problem, where an instance of a dm is guessed by a nondeterministic algorithm,
and then compared to the dm in question. Note that the actual comparison is
done in polynomial time mn where m is the number of rows and n is the number
of columns, being a simple comparison of two matrices.9

In order to solve this problem, a nondeterministic algorithm need only guess
a particular dm from the exponential number of possible dm's that may be
created (from any particular PM) in the states of the machine. We then need
to compare the guessed dm with the particular dm of interest. As mentioned
above, the comparison of the two matrices takes place in polynomial time, and
the number of states is linear (and therefore also polynomial). Therefore, the
problem is in NP. ut

Theorem 2. APM is NP-complete.

Proof. We polynomially reduce the well-known NP-complete Satis�ability (SAT)
problem [3] used in Cook's theorem to APM.

We briey review SAT. We have a set B of Boolean variables, and a collection
C of clauses over B. The decision problem being: is there a satisfying truth as-
signment for C? The following example is paraphrased from Garey and Johnson
[7] (we have changed some of the set names to conform to our notation).

Let B be a set of Boolean variables. A truth assignment for B is a
function t : B ! fT; Fg. If b is a variable in B, then b and �b are literals
over B. A clause is a set of literals over B representing the disjunction
of those literals and is satis�ed by a truth assignment iff at least one
of its members is true under that assignment. A collection C of clauses
over B is satis�able iff there exists some truth assignment for B that
simultaneously satis�es all the clauses in C.

9 If multiple source pre�xes exist in the rows of the policy matrix, then we can collapse

the policy matrix by replacing the pre�x sources with a single row that is the union

of the pre�xes. This will yield the most permissive set of possible dm's without loss

of generality.



For example, B = fb1; b2g and C = ffb1; �b2g; f�b1; b2gg provide an
instance of SAT for which the answer is \yes." A satisfying truth as-
signment is given by t(b1) = t(b2) = T . Alternatively, replacing C by
C 0 = ffb1; b2g; fb1; �b2g; f�b1gg yields an instance for which the answer
is \no." C 0 is not satis�able.

We need to reduce, in polynomial time, an arbitrary instance of a SAT prob-
lem to APM.

We restrict ourselves to two actions in JAM, such that A = fT; Fg corre-
sponding to Boolean TRUE and FALSE respectively. Let m = jCj and n = jBj.
We then construct a PM that has m0 = 2n rows, and n columns such that each
column corresponds to a unique variable in B. This gives us a PM of size m0n.
The cells of the PM are constructed in such a way that we can generate dm's
with m rows and n columns where each dm cell contains only one action, T or
F (this means that the PM will contain every possible combination of unique
rows with cells composed of T 's and F 's).

We are now ready to begin the reduction of the problem instance. The par-
ticular dm that we want to compare against is termed dm0. dm0 has m rows and
n columns. Each row in dm0 corresponds to a particular clause in our instance
of SAT, and each column corresponds to a particular variable in B. We use the
function g : C ! dm0 to �ll in some of the cells of dm0. Function g works the
following way. If a particular literal in a clause in C is not negated (i.e., there is
no bar over the literal), then we change the corresponding cell in dm0 to T . If a
particular literal in a clause in C is negated (i.e., there is a bar over the literal),
then we change the corresponding cell in dm0 to F (note that it is likely that
some of the cells of dm0 will be empty). It takes polynomial time mn to generate
dm0. At this point the reduction of the problem instance is �nished.

We now use a nondeterministic algorithm to generate possible solutions to
APM by generating one dm out of a possible 2mn unique dm's that are the
same size as dm0, where each cell contains either the action T or the action F

(henceforth a dm guessed by our nondeterministic algorithm will be referred to
as just \dm"). At this point, each row in the constructed dm is analogous to
applying the SAT truth function t to the Boolean variables in B, and placing the
results in each cell, where T is equivalent to a Boolean true and F is equivalent
to a Boolean false. For example if B = fb1; b2; b3; b4; b5; b6g then we would
have a dm that might contain T; T; F; F; T; F respectively in each of the 6 cells
in one of its rows (this being a particular guess we are checking). It takes time
mn to \guess" a solution dm giving a total time of 2mn at this point.

We now do the actual comparison of dm against dm0 to check for a satisfy-
ing truth assignment. We decompose the guessed dm into m one-row matrices
dm1

i ; 1 � i � m, taking time mn for a total time of 3mn at this point. We then
construct a temporary matrix, dmh that is the same size as dm0 by applying a
new function h : dm0[s; t]; dm1

i [t] 7! dmh[s; t] to each cell in dmh. Function h

works as follows. If cell dm0[s; t] is empty, then h inserts F into dmh[s; t]. If the
cell contains T , h copies the action from dm1

i [t] to dmh[s; t]. If the cell contains
F , then h places the compliment of dm1

i [t] into dmh[s; t]. This takes time mn



giving a total time of 4mn at this point. To solve, we do a Boolean OR operation
on each of the m rows in dmh (taking time mn for a total time of 5mn), followed
by a Boolean AND operation of the m results taking time m for a total time
of 5m2n. To �nish the comparison we do the above for each dm1

i (since there
are a total of m one-row matrices, this takes time m for a total time of 5m3n),
and do a Boolean AND operation on the m results10 taking time m. Therefore,
the total comparison time of dm against dm0 is the polynomial 5m4n. To solve
SAT, if our �nal result is true then dm matches dm0, and we have an instance
of SAT that is a satisfying truth assignment. If all of the exponential number of
dm's do not satisfy, then our instance of SAT does not have a satisfying truth
assignment.

Any instance of SAT which satis�es, will also satisfy our reduction. Any
instance of SAT that does not satisfy, will not satisfy our reduction. Therefore,
APM is NP-complete. ut

6 Implications of Dynamically Changing Security Policies

Currently, a JVM enforces a single static security policy based on the system
security policy �le(s) read during initialization. Our safety analysis in section 5
proved that the problem of whether a particular dm can appear given a particular
PM is an NP-complete problem. The fact that APM is NP-complete shows
that the consequences of a given policy are quite di�cult for users to evaluate.
Even so, JavaSoft is presently working on a mechanism that allows changes to
a JVM security policy after initialization (i.e., dynamically changing PM 's)
via a secure mechanism [8]. The improved exibility of dynamically changing
security policies is not without penalty due to the increase in complexity of
JVM implementations. Flawed implementations, regardless of how they became
erroneous, are far more detrimental to security than the bene�ts provided by
this exibility. Using our model, we can explore the implications for currently
executing Java programs with dynamically changing security policies.

One possible way to dynamically change the policy may require certain pre-
conditions to be satis�ed before the policy change may occur.11 The simplest
requirement would be that all executing threads are executing within the con-
�nes of the original sandbox before the new security policy becomes e�ective. If
domain matrices are utilizing resources \outside" of the original sandbox and the
change in the security policy must be e�ective immediately, then there are a few
alternatives. The easiest and most secure implementation would require that all
of these threads be terminated (via the stop(dm) command in our model) before
the update occurs. Although this may seem rigid, co-existing security policies
(multiple PMs) for the same principal will complicate the implementation of

10 Technically, the �nal Boolean AND could be a Boolean OR and still �nd satisfying

truth assignments. However, the AND is necessary in order to retain the structure

of the matrix comparison between dm and dm0.
11 This is a common object-oriented technique known as design by contract.



security controls in a JVM and is subject to luring attacks by allowing more
permissive threads to linger through changes to the security policy for a JVM.

A less rigid implementation for dynamically changing the security policy for
a JVM may depend on the speci�c changes to the policy �les. If a modi�ca-
tion to the policy �les makes any protection domain(s) more permissive (only
adds actions for one or more targets), then each dm that traversed any of these
protection domain(s) can simply be granted these new permissions. If imple-
mented correctly, this does not pose a problem. If a modi�cation to the policy
�les makes any protection domain(s) less permissive (removes actions for any
target), then the update is more complicated. For each thread of execution (dm)
that traverses an a�ected protection domain, either the update does not occur
until the protection domain is no longer accessible by the thread, or the thread
of execution is simply terminated.

A naive implementation that allows a dm to be updated with fewer (or less
permissive) actions may result in the executing applet/application not complet-
ing its computation. For instance, suppose a currently executing thread has
received permission to write to a given �le and the new policy disallows this
permission (while the thread is writing to the �le). Then, subsequent resource
access by that thread will either throw a java.lang.SecurityException or incor-
rectly allow the thread to continue writing to the �le.

The design for supporting dynamically changing policies has not been de�ned
yet, but this mechanism is intended to be included in future implementations.
Using JAM, we can more easily analyze how this mechanism is best implemented
and how threads that persist over changing policies may be dangerous if not
handled properly. Clearly, the implementation of this capability to dynamically
change a security policy for a JVM is complex (and thus error-prone), and as we
have seen in the past, this is typically an avenue for discovering loopholes and
bypasses to the security controls.

7 Conclusion

The security controls in JDK 1.2 have many desirable features. Stack introspec-
tion is not vulnerable to tampering or direct program access even though stack

introspection can have high runtime costs.12 Further, extended stack introspec-
tion also o�ers good backward compatibility with existing Java applets [18] by
defaulting to the original sandbox policy if no other security policy is speci�ed.

Extended stack introspection is not a panacea, however. It requires complex
changes to the virtual machine. More speci�cally, each class needing protection
must explicitly consult the security system to see whether the class was invoked
by an authorized party. This check adds at least one line of code to each class.
As we previously noted, changes to the JVM could destabilize the whole system.
This adds risks because the major commercial browser vendors (Microsoft and
Netscape) have diverged in their implementation of the JVM.

12 In the worst case, the depth of the stack is traversed before permissions are granted

as modeled by the PERMIT function.



Inevitably the exibility a�orded by the JDK 1.2 security controls introduces
complexity and more opportunity for error-prone JVM implementations. Our
formal security model provides a more rigorous and unambiguous speci�cation
of the intended behavior of the security control design of JDK 1.2. By formalizing
de�nitions of the security controls, we were able to: (1) identify potential points
of variance in JVM implementations (di�erent stack introspection algorithms
and the privileged mechanism), and (2) provide a means to compare the actual
behavior of the security controls in di�erent JVM implementations.

Our safety analysis focused on whether a particular dm can appear in future
states because it is not possible to limit what can appear in a policy �le. Our
safety analysis showed that APM is NP-complete (cf. [10, 11, 17]). Therefore,
if expressing security by APM is of interest to designers and implementors,
then any particular policy �le con�guration can be inspected (not necessarily
e�ciently) using methods appropriate for NP-complete problems.

In response to the complexity of static policy �les, we used our model to
explore the impact of dynamically changing policy �les. As additional features
of the Java security architecture in JDK are announced, we plan to reuse our
model to analyze the rami�cations of those features.
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